Supplementary Information

In what follows we present the full technical details of all our findings. Section [A] provides the definition of the basic
quantities used in our work, namely the Rényi entropies and divergences and useful relations between them. In Section
Bl we briefly summarize the theory of majorization and trumping, which we will later generalise and use to derive our
set of exact second laws. We then introduce the connection between Rényi divergences (which our generalised free
energies are based on), and trumping, and show how to reduce the number of trumping relations required. We then
show that this provides the basis of catalytic transformations in the simple setting where the Hamiltonian is trivial.

In Section [C] we provide the overview description of catalytic operations in the context of full thermodynamics with
general Hamiltonians. We then proceed in Section @ to show that only a unique set of states (namely Gibbs states)
can be used as free resources, to obtain non-trivial state transition conditions. This allows us to define equivalence
classes between state-Hamiltonian pairs, giving rise to the zeroeth law of thermodynamics. Our main technical result
is TheorenfI7] of Section [E] which generalises trumping relations from the bistocastic case, to the case of arbitrary
channels which take a subset of states to some other subset of states. We expect this to be of independent interest with
applicability in a broad range of contexts. This provides the mathematical tools to formulate necessary and sufficient
conditions for thermodynamic state transformations for states block diagonal in the energy eigenbasis. These are
detailed in Section [F] Here, we also observe the elimination of conditions for ranges of «, when certain states are
allowed to be used and returned with close fidelity. In particular, borrowing a pure state allows us to eliminate
conditions where o < 0, which significantly simplifies the conditions on state transformations. We also apply our
second laws to the case of Landauer erasure of states while preserving a memory in Subsection In Subsection
we go beyond classical states, and present a family of fully quantum second laws.

Section [G] makes an extensive presentation on the case where inexact catalysis is allowed, and we show that for
different regimes of closeness between the catalyst’s initial and final state, we obtain different second laws. The
different regimes include exact catalysis, returning the catalyst such that a small amount of work is required to bring
it to it’s original state, returning the catalyst with small error per particle, returning it such that only a small amount
of work on average is required to bring it back to its original state, and returning it with arbitrary good fidelity, where
we find that all state transformations are possible. In Supplementary Information [H] we show how for larger systems,
one can often check just two quantities to determine if a state transformation is possible. In[l] we discuss in more
detail how our paradigm incorporates changing Hamiltonians. Since we have conditions for state transformations
using ancillary systems, we are in a position to prove the optimality of the procedure for changing a Hamiltonian used
in [I]. The work storage system is also an ancillary system, and we further discuss the equivalence of the work bit, to
other batteries.

Appendix A: Preliminaria: Rényi relative entropies and their properties
1. Rényi divergence

Consider probability distributions p = {p1,p2,...,pn} and ¢ = {q1, g2, -.., ¢» }. The Rényi divergences are defined for
a € [—o0,00] as follows

Da(pllg) = lgzpqu ° (A1)

where
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We use the conventions ¥ = 0 and ¢ = oo for a > 0. The cases & = 0,1, 0o, —oo are defined via the suitable limit,
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Note that for a = 00, Dy (p||q) can also be expressed as:

K2

D (pllq) = log min {)\|Vi, A> ])z} (A3)

Also, there exists a useful relation between two divergences for o ¢ {0,1}:
asgn(l — @) Di—a(pllg) = (1 — a)sgn(a) Dalgllp)- (A4)

For some properties of Rényi divergence, the reader can refer to [2, [3]. Note that discussions in other literatures
define Rényi divergence for only non-negative alphas. However, the relative entropy D, we define satisfies the data
processing inequality for all « € [—o0, 0]:

Dq(A(p)lIA(g)) < Da(pllg), (A5)

where A is a stochastic map. The range o € [0,00] is proven in [3], while the negative regime is an immediate
consequence of Eq. (A4). For « € [0, 00] the Rényi divergence is nondecreasing in o

Da(pllg) < D, (pll9) (A6)

for ao <« (see Theorem 3 of Ref. [2]).

2. Rényi entropy

The Rényi entropies are defined for « € R\ {0, 1} as

sgn( o 2
o) = 103 (A7
i=1

where sgn(a) has been defined in (A2). Again, for a € {—00,0,1,00} we define H, (p) by taking limits. Explicitly we
have

Hy(p) = logrank(p), Hi(p) =—> pilogpi, Hoo(p) = =108 Pmax H—oo(p) = 10g pinin (A8)
i=1

where rank(p) is the number of nonzero elements of p, and pmax, Pmin are the maximal and minimal element of p,
respectively. The Rényi entropies can be recovered from the relative Rényi entropies as follows

Ha(p) = sgn(a)logn — Da(pln) (A9)
with n = %, %, s %} is the uniform probability distribution.
It is worth noting that the Rényi divergences and entropies have generally been defined only for positive alphas.
However, for completeness, we have generalized the definitions to negative alphas so that conditions for state trans-
formations can be described fully by these quantities.

3. Quantum Rényi divergence

The Rényi divergence can be generalized to the quantum case in many different ways (see e.g. [4, [5]) due to
noncommutativity of quantum states. The most straightforward generalization is the following candidate:

u(pllo) = B g g pog1-o (A10)
a—1
For o = 0 it reduces to the min-relative entropy given by S'min(pHa) = —logtr(Il,o), where 7, is the projector onto

the support of p, and for & — 1 it reduces to the standard quantum relative entropy:

Jim Sa(pllo) = S(pllo) = tr(plog p — ploga). (A11)



As proved in Lemma B.4 of [6], this version of Rényi divergence is known to be monotonic under quantum operations
for a € [0, 2], i.e. for any completely positive trace-preserving (CPTP) map A and states p, o we have

Sa(A(p)l[A(0)) < S(pllo), (A12)

for0<a<2.
In [7, 8] (see also [9]) another version of the quantum divergence was introduced for a € (0, oo]:

1 —a 11—«
1 log (tr(alTprW)a> (A13)

Sa(pllo) =

The cases @« = 1 and o = oo are obtained by limits so that S;(p||o) is the standard relative entropy and
S (pllo) =log|lo~2 po~2||s where ||-||o is the operator norm. Recently it was proven in [5] (see also [I0]) that this
entropy is monotonic under quantum completely positive trace preserving maps for o > 1/2; namely for any CPTP
map A and states p, o we have

Sa(Ap)[[A(0)) < S(pllo), (A14)

for a > 1/2.
Note, that if p and ¢ commute, then both types of quantum Rényi divergences reduce to the classical version.

For both of these quantities, we can further define a Rényi-skew-divergence generalising the skew divergence of [T1].
Le.

Salpllo) = S5 (pllv) (A15)

with v = sp+ (1 — s)o and s € [0,1]. The definition is similar for S, and they will both turn out to be a monotone
under thermal operations when o is the thermal state.

4. Majorization and Schur convexity

There is a partial order between probability distributions called majorization, which is defined for arbitrary vectors
z,y € Rf. We say that = (1, ... ) majorizes y = (y1,...yx) if forall [ =1,...k

k k
xf > Zyzi, and le = Zyl-, (A16)
i=1 i=1

i=1 i=1

where z' is a vector obtained by arranging the components of z in decreasing order: zt+ = (x%, . ,xi) where

x% > ... > xt We write
x -y (A17)

to indicate that x majorizes y.

A function f is called Schur convex if it always preserves the majorization order, i.e. if = y implies f(z) > f(y).
If the majorization order is always reversed, the function is called Schur concave. A function is called strictly Schur
convex if x = y implies f(z) > f(y) except when 2+ = y*, then f(x) = f(y). A useful criterion for strict Schur
convexity is stated in the following lemma:

Lemma 1. A function f : RY — R of the form f(z) = Y, g(z;) is (strictly) Schur convex/concave, iff g(z) is
(strictly) convezx/concave.

This lemma follows from the general criterion of Schur convexity [12]. However it is easy to prove directly, using
the Birkhoff-von Neumann theorem, which states that if p > ¢, then ¢ is a convex combination of permutations on p.
(cf. Theorem . Using this, and the strict monotonicity of the logarithm, we see that the Rényi entropies reverse
the majorization order:

Lemma 2. For o € (—00,0) U (0,00), the Rényi entropies H,, are strictly Schur concave. For o = 0, £00, the Rényi
entropies are Schur concave. The function ), logp; is also strictly Schur concave.



Appendix B: Exact catalysis with trivial Hamiltonian

We are interested in the interplay of energy and entropy, which is the essence of thermodynamics. However, before
we approach this problem, it is instructive to first consider the case where the Hamiltonian is trivial in the sense that
H =0, and thermodynamics is reduced to bare information theory.

This toy model for thermodynamics was described in [I3] and it has its roots in the problem of exorcising Maxwell
demon [14] [I5]. Tt is constructed within a framework of so called resource theories fo thermodynamics [I} 13| 16, [I7]
having its roots in research on entanglement manipulations [I8H21], where one is interested in transformations between
states by means of an allowed class of operations. Some states can be brought in for free, and they constitute a free
resource. The others cannot be created, but only manipulated, i.e. we may transform one resource state into
some other one. In the mentioned toy thermodynamics, which is perhaps the simplest known resource theory, the
free resource are just maximally mixed states, and all unitary transformations as well as partial trace are allowed
operations. The emerging class of operations was called noisy operations. It was shown that in the case of systems
of the same size, the class of noisy operations is equivalent to mixtures of unitaries. Therefore the condition that p
can be transformed into p’ is equivalent to majorization: p can be transformed into p’ iff the spectrum of p majorizes
the spectrum of p’ [22]. The noisy operations are equivalent to thermal operations applied to a system with a trivial
Hamiltonian.

As we mentioned, in this toy thermodynamics, the law that governs state-to-state transitions is majorization.
However, this is only so when we do not allow ancillary systems that are then returned in the same state. It is
interesting to analyse how the laws change if we allow catalytic transitions between states. Since the transitions
without catalysis are governed by majorization, the catalytic transitions will be governed by trumping. We say that
x can be trumped into y if there exists some finite-dimensional z such that

TRz>Y® 2. (B1)

The condition that z be finite dimensional is physically reasonable, since the experimenter is working within a finite
volume and below some maximum energy. In [23] it was for the first time shown that using catalysis, one can perform
transitions otherwise impossible. In particular the following explicit example of states that do not majorize one
another, but allow catalytic transition was given

4 4 1 1 111
p= <10710710710>7 q= (2747470) (B2)

One checks that p; < g1 but p; +p2 > q1 + g2. Now, if one takes the catalyst r = (1%, %), then g®r > p®r, so that
q can be trumped into p.

Recently Klimesh and Turgut [24], 25] independently provided necessary and sufficient conditions for x to be trumped
into y. These were in terms of functions closely related to the Rényi entropies. We present here a set of conditions,
equivalent to the Klimesh-Turgut ones, written in terms of Rényi divergences w.r.t. the uniform distribution 7. Let
us first state the result of Klimesh’s work in the following lemma.

Lemma 3 (Theorem 2, [24]). Let z € R} and y € R} be probability vectors which do not both contain components
equal to zero, where x #y. Then x can be trumped into y if, and only if, for all « € (—o00,00):

fa() > fa(y), (B3)
where
log Zf:l g (a>1)
Yy wilogmi (a=1);
falz) =4 —log>F 22 0<a<1); (B4)
Zle logz; (a=0);
log o0, af (@ <0),

Subsequently, we prove that when « is only required to trump y up to some arbitrarily high precision (meaning that
x trumps another state y. arbitrarily close to y), then the conditions originally stated in Lemma can be equivalently
written in terms of non-strict inequalities.

Proposition 4. Let x € R; and y € R; be probability vectors. Then the following conditions are equivalent:

1. For arbitrary € > 0, there exists y. such that ||y — ye|| < & and x can be trumped into y..



2. The following inequality:
Da(x[[n) = Dal(yln) (B5)
holds for all o € (—00,00), withn = (1/k,...,1/k) being the uniform distribution.

Proof. Let us first consider the trivial case where £ = y. Then condition 1 holds, since for any € > 0, we can define
yYe = y = « itself, and we know that > x is true. Condition 2 also holds by definition.

Next, we divide the proof into two parts:
“Condition 1 implies 2”: Let us first note that without loss of generality we can assume that y. is of full rank. Indeed,
if it is not, we can perturb the state to add a small amount of noise (which is a valid noisy operation), obtaining g/
which has full rank, i.e. no zeros, and satisfies ||gs — y|| < &/, with & arbitrarily small. With this assumption, the
condition of numbers of zeroes in x and y need not be stated.

Let us then look at the case where if z # y. Assume that condition 1 holds. Then by Lemma [3] we know that for
any € > 0, there exists y. such that for all a € (—o0, 00),

fa(z) > fa(ye). (B6)

We also know that the functions f, are continuous, and this is true even for the case when the functions diverge to
infinity. For example, consider y which does not have full rank, lim. o+ fo(y.) = 0o even if y. is assumed to be of
full rank. Therefore, we conclude that Eq. implies that f,(y) = lim. o fo(ye) < fol(z).

Now, all the functions f,, excluding o = 0 are proportional to —H,(z). In turn, the Rényi entropy is related to
Dq(x||n) by Equation (A9). Since Dy is obtained by taking D, in the limit of & — 0+, according to Remark [f] we
have that Do(z[|ln) > Do(yl|n)-

“Condition 2 implies 1”: Now, suppose that condition 2 holds instead. From the argument above we know that this
translates to fo(x) > fo(y) for all @ # 0. For any € > 0, define y. = (1 — ¢)y + en, and we know that y > y., which
also means that y trumps y.. Hence by Lemma [2| Vo #£ 0, fo(z) > fo(ye).

Before we proceed, note that for any € > 0, fo(ye) < oo. If  has full rank, then it can be verified that

k
- > tog, ~logk = lim L=2D, () (B7)
We can now analyse the following cases.

A) z is not of full rank : In this case, fo(z) = 0o > fo(ye), so the condition on f holds trivially.

B) z is of full rank : In this case, Eq. holds. Therefore we know that if condition 2 implies Do(z||n) > Do (y||n),
then this also implies that fo(z) > fo(y) > fo(ye). This independently verifies that condition 2 implies that the
Klimesh conditions for trumping corresponding to o = 0 is satisfied.

We have seen that assuming condition 2, we can construct y. such that the Klimesh trumping conditions in Lemma
holds for x and y.. Therefore by Lemma [3] implies that for any € > 0, there exists y. such that x trumps y.
(condition 1).

O

Remark 5. Knowing that non-strict inequalities are enough, one can remove any discrete number of trumping
conditions, as they can be obtained in the limit from the other conditions.

The Klimesh-Turgut conditions have a peculiar feature. Namely, if there are zeros in both x and y we have to
truncate the zeros and compute the conditions on smaller vectors. This means that we do not simply compare two
functions, but which function we will choose depends on some relation between the vectors. Second, the condition of
having zeros in both vectors is very unstable. If we slightly perturb y so that we remove zeros, then we do not need to
truncate anymore. Note that the problem here is only with negative «, as for positive « the functions D, (p||n) do not
depend on additional zeros, while the functions with negative « are infinite, when at least one component vanishes.

We note that earlier, Aubrun and Nechita [26] gave conditions for trumping, in which only H, with o > 1 were
needed. This is because they considered a special kind of closure, where one is allowed to add an arbitrary number of
zeros to the initial vector « while returning an (arbitrarily good) approximation of the needed output y. This is a kind
of embezzling (see section for definition of embezzling): One adds an ancilla and returns it with arbitrary small
error, but the size of ancilla needs to grow in order to make the error smaller. In thermodynamics this is not allowed,
as according to the second law, we should consider processes which do not change the environment. Proposition
already suggests how the conditions for thermodynamics should look like: the maximally mixed state should get
replaced by the Gibbs state. In section [E] we will prove that this is indeed the case.



1. Restricting to a > 0 by investing a small amount of extra work

In this section, we will argue that if we are allowed to invest an arbitrary small amount of work, only the conditions
with positive « are relevant. This was considered by Aubrun and Nechita in [20], and the way we do that below is
very similar.

We have three cases

(i) p has more zeros than g.
(ii) p has fewer zeros than q.
(iii) p and ¢ have the same number of zeros (in particular, can both have no zeros).

In case (i), after truncation p will still have zeros, and so relative entropies for p with negative o will be infinite.
Therefore the conditions with negative « are always satisfied. In case (i¢) the transition cannot be realised, but this is
reported by comparing ranks, which can be obtained using Hy = lim,_,q+ H,. So again already the conditions with
a > 0 report the impossibility of transition, and negative a’s are not needed. Finally, in case (i), if we consider the
transition p — ¢, with a small amount of work invested in addition:

P @10)a+1(0[ @ 1a = ¢ ©[0)a{0] © na+1, (B8)

where |0)4(0| stands for the distribution (1,0, ...,0) (equivalently, a pure state on C*) and 7, stands for the uniform
—_————
k

distribution with k& elements. The invested amount of work is log %, hence it is arbitrary small, when d — co. Now,
on the left hand side, we have more zeros than on the other side (as initially, we had the same number of zeros).
Therefore, we are back to case (7).

Note however, that we can rule out negative « in a different way, if instead of insisting on preparing the exact output
state, we allow for preparing an e-approximation, with arbitrary accuracy (as discussed in Prop. |4). Therefore, in
case (iii) considered above we can add to both sides an ancilla in a pure state of the same dimension (which is actually
needed only when p and ¢ both have no zeros). Then both input and ouptut will have the same number of zeros. But
as the desired output we can take an approximation of it which is full rank. Then the transition is governed solely
by the conditions with positive a. The returned state of ancilla is now only approximately pure, but the accuracy
is arbitrarily good. Note that we can choose the approximation in such a way that it affects only the ancilla; the
original output state is not changed and will be produced exactly.

The above two methods of ruling out negative o do not differ very much: in the first one we input some pure state
of large dimension and return a pure state of dimension smaller by 1, while in the second we input a qubit in a pure
state and return it with arbitrarily good approximation. However, in both cases one has to borrow a perfectly pure
state, which in thermodynamic context would mean initially investing an infinite amount of work.

Appendix C: Catalytic thermal operations

In Sec. [B] we considered catalytic noisy operations, where apart from using noisy operations, one can add any
catalyst, provided it is returned in the same state. To obtain a full picture of thermodynamic interactions, we
consider a generalisation of these operations to the setting where we have non-trivial Hamiltonians, and a class of
thermal operations introduced in [T}, 16, I7]. The relevant objects now come in pairs (p, H) - the system’s state and
its Hamiltonian.

Consider a fixed temperature 7. Then given a system S in some initial state p, thermal operations include the
following procedures:

e adding any system pg which is the thermal state w.r.t. an arbitrary Hamiltonian Hp at temperature T,
e applying arbitrary unitary that commutes with the joint Hamiltonian of system and reservoir Hg + Hpg,
e removing a system by performing partial trace.

It is clear that thermal operations preserve the thermal state. Conversely, for states diagonal in energy basis, any
operation which preserves the thermal state belongs to the class of thermal operations as proved in [II [16].

We now consider catalytic thermal operations, where in addition to thermal operations, one can add an ancilla called
the catalyst (pc, Ho), provided it is returned in the same state (in product form with the other systems). In other



words, (p, H) can be catalytically transformed into (p’, H') if there exists catalyst (pc, Ho) such that (p®pc, H+ He)
can be transformed into (p' ® pc, H + H¢). Demanding that the catalyst be returned uncorrelated from the system
is natural, since one is likely to want to re-use the catalyst over many cycles, and having correlations between the
catalyst and the system could result in inefficiencies later on. One could also imagine that the purification of the
catalyst is held somewhere, and require that the catalyst and its purification remain close to its original state.

Appendix D: The zeroeth law and the emergence of temperature as equivalence relations required for
thermodynamics to be a non-trivial resource theory

In this section, we spell the proof of the zeroeth law in this framework of thermal operations, which singles out Gibbs
states as the unique free resource in thermodynamics. More precisely, if we consider the resource theory framework of
thermal operations, which allows arbitrary energy preserving unitaries across the global system, then the only resource
states that, when allowed for free, does not give rise to trivial state conversion conditions is that of the Gibbs state.
It is clear that this is directly related to work extraction via thermal operations, since one should make sure that
work cannot be extracted from a freely allowed resource. Otherwise, one could, by using indefinite amounts of free
resources, extract enough work to facilitate any state transformation. Therefore, we want to show that given a system
Hamiltonian H 4, and the corresponding thermal state 74 with some fixed temperature 7', then by allowing arbitrarily
many copies of any other state py # 74, one can always extract work deterministically by thermal operations.

Let us first show that this is true for states diagonal in the energy eigenbasis. The case where coherences between
energy eigenstates exist can be dealt with, as shown in [27], by decohering multiple copies of the state in its energy
subspace, and invoking Landauer’s principle to extract work. We shall base on the result of Pusz and Woronowicz
[28] who introduced the notion of passive states, i.e. the states whose energy cannot be decreased by arbitrary cyclic
Hamiltonian evolution. They further introduced a notion of completely passive states:

Definition 6 (Completely passive states). A state p is completely passive iff for all n € Z*, p®™ is also passive.

They proved for general quantum systems described by a C* algebra that the only completely passive states are
either so called KMS states or ground states. Lenard [29] has translated their results to the case of finite-dimensional
systems. For such systems one has:

Fact 1. Consider a state p corresponding to some Hamiltonian H, and let {p;} and {E;} be the eigenvalues of p and
H respectively. Then p is passive, iff [p, H] =0, and for any i,j, E; > E; implies that p; < p;.

Moreover a state which is completely passive is either ground state or a Gibbs state (since in finite dimensional
state, the KMS state is unique and it is just the Gibbs state).

Either from the very definition or from the above characterization one sees that given any non-passive state p,,, one
can extract on average a non-zero amount of work by performing a population inversion (a switch of energy levels). By
invoking typicality arguments, we show that by performing extraction over many identical copies of p,p, an amount
of work closely related to average work can always be extracted except with small probability. Then to conclude, one
uses the mentioned result, that any state which is not a Gibbs state or a ground state, becomes non-passive, once we
take sufficiently many copies.

Before beginning the proof, we state for completeness Theorem [7] which is the main tool we use to invoke typicality.

Theorem 7 (Hoeffding inequality). Consider x = vazl h;, where hq,--- ,hn are independent random variables such
that for every i, h; € [a;,b;]. Denote R; =b; — a;. Then for any o > 0, the probability

_ 2a2N2

Pllz — E[z]| > aN] <e Tifi. (D1)

Theorem 8. Given any non-passive, diagonal state p corresponding to some Hamiltonian H. Then for any probability
e > 0, there exists m such that given m copies of p, it is possible to extract a non-zero amount of work, except with
probability €.

Proof. There are two main steps in this proof: first we construct the unitary that performs work extraction from a
single copy of p, while storing the work in a battery system B similar to that of [27]. Subsequently, we form the
joint unitary over the m systems and the battery system, and use the Hoeffding inequality to bound the amount of
extracted work, albeit with some small failure probability.

Consider a non-passive pa, on system Ag, 1 < k < m. Then by the definition of passivity, there exists some
i,j where E; > Ej, p; > p; holds. Construct the battery as a harmonic osciilator system with Hamiltonian Hp =



8

25:1 nhw|n)(n|, where hw = E; — E;. Define the lowering operator ag = Zil |i — 1)(i| and the joint energy-
preserving unitary over system Ay and B,

Uy = [i)(jla, ® @B + i) (ila, @ af + 0){ilae @ IN) NIz + 15){(jla, @ 0)0lz + D [r)(rla, @I (D2)

T#4,J

Clearly, this unitary acted upon the initial joint state pa, ® |m)(m|p extracts fiw > 0 amount of work into the battery
system with probability p;, and —Aiw with probability p;, while the expectation value of work extracted is given by
the difference in expected energy in the battery system, (W) = fw(p; — p;) > 0.

Now, similarly, consider the initial state ps4, ® - ® pa, ® |m)(m|p, and the unitary transformation U,, ---U;.
Each unitary raises, lowers or leave unchanged the battery state with certain probabilities; hence this operation can

be represented with a string x = x; - - - x,, numbers, where for ally =1,--- ,m,
Pi (c=1);
p(ry =¢) = P (¢=—1); (D3)
1—pi—p; (c=0)
The total amount of work extracted in this process is equal to Wp = zihw, where xp = Z:’;l x;, while the
expectation value of zr is (1) = m(p; — p;) > 0. Since z1,-- - , 2y, are i.i.d. random variables with bounded values

between -1 and 1, we can invoke Theorem [7] for some small number « > 0, obtaining

Plor < (wr) — am] < Pllor — (or)] > am] < exp [2;””] — exp [“2”‘} -, (Da)

2z 22

Therefore, we conclude that Wr > ({xr) — am) hw > 0 except with probability . For any ¢ > 0, pick some small «
and m = % log% suffices. O

Theorem 9. Given a fivxed Hamiltonian H, if p' is not the Gibbs state or the ground state corresponding to the
Hamiltonian H at a certain temperature T, then for any € > 0, there exists n such that given n copies p’, it is possible
to extract a non-zero amount of work, except with probability at most €.

Proof. The proof comes from a straightforward realisation that any such p’ is not completely passive, hence there
exists some positive integer a such that p’®® is non-passive. One can then invoke Theorem [§| with p = p'®%. For any
€ > 0, pick some small a and n = am = a% logé suffices. O

Appendix E: Catalysis with general Hamiltonians

We now turn to the case of the full theory of thermodynamics, where we have an interplay between energy and
entropy. In this case, the Hamiltonian of the system and reservoir are arbitrary. To derive the conditions for state
transformations, we will need a generalisation of the majorisation condition, known as d-majorisation, which we
describe in We then derive the catalytic version of this, in theorem Next we show that it is sufficient
to consider catalysts diagonal w.r.t its Hamiltonian, when the initial state is already block diagonal in the energy
eigenbasis. We can then apply our results to the case of thermodynamics to derive second laws — these are stated
seperately in Section [F] We will later in Section [G] discuss the case where the thermodynamic processes do not return
the catalyst in exactly the same state, but only approximately close.

1. d-majorization

Definition 10. Given probability distributions p,q,p’,q’, we say that (p,q) d-majorizes (p',q’) if and only if for any
convez function g,

s (5) = o () =)

We denote this as d(p||q) = d(p'||q’)-

The Birkhoff-von Neumann theorem relates majorization to transition between states, which we state here:



Theorem 11. For two probability distributions p and p' the following two conditions are equivalent:
(i) p magjorizes p’.
(ii) there exists a channel A such that
Alp) =p', Aln) =n, (E2)

where 1 is the uniform distribution.

The generalization of Birkhoff-von-Neumann theorem to d-majorization is as follows:
Proposition 12 (Theorem 2, [30]). For probability distributions p,p’,q,q’ the following two conditions are equivalent:
(i) (p,q) d-majorizes (p',q'),
d(pllg) = d®'llq). (E3)
(i) There exists a channel A such that
Alp) =79, Aag)=1d. (E4)

In fact it has been shown that a particular limited set of convex functions is sufficient. In the case when ¢ =
¢’, the conditions can be expressed by the so-called thermo-majorization diagrams identified in [I]. The thermo-
majorization diagrams can be easily extended also to the case ¢ # ¢’, although this is not relevant for our application
to thermodynamics in which ¢ = ¢’ is the Gibbs state.

One can see that Proposition [12| implies Theorem by taking ¢ = ¢’ = 1 and noting that

p=p < dpln) = d@ln). (E5)

A natural question is whether there is a trumping analogue for d-majorization. We show that this is the case in
section where we prove a version of Prop. allowing catalysis. We will recover analogous relations to the
Klimesh-Turgut ones in the case where ¢ = ¢’ = 1. We illustrate the situation in Table

standard majorization d-majorization
no catalysis d(plin) > d(plln) d(pllg) = d(®'llq)
A Ap) =p, Am) =n A Ap) =9, Mo =4
Vi pe > p comparing diagrams (Fig. ?7?)
catalysis Da(pln) = Da(p'lIn) Da(pllg) = Da(p'llq)
A, r: Apr)=p' ®@r, A7) =m0\, rs: A(pR7)=p.®r, Alg®s)=q¢ s

TABLE I: Partial orderings as criteria for state transformations. p. is an arbitrarily good approximation of p’.

2. Notations and technical tools

Before setting out to prove the main result in Section [E3] we list several technical tools and lemmas that we will
use.

We will start by describing an embedding channel, which will be used later to prove the above results. Consider the
simplex of probability distributions {p;}*_; and a set of natural numbers {d;}¥_,,i =1,...,k, and let N = Zle d;.
We define the embedding

I'(p) = ®ipimi, (E6)

where n; = {d%_, ceey d%} is the uniform distribution. More clearly, the image can be writen as the following N-
dimensional probability distribution:

b1 b1 Pk Pk
I = e,
(p) {dl’ ,dl, ’dk’ ?dk}

d1 dk

(E7)
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The inverse map I'* acts on the space of N-dimensional probability distributions p, where

p=ofp?, (ES)

with each p(9) = {ﬁgi), e p((ji)} being a (unnormalized) d;-dimensional probability distribution. I'* can be written as
I“(p) =r, (E9)

with r = {r;}%_| being a normalized probability distribution with the form r; = Z?Zl ﬁgi). The maps I' and I'* are
channels, and for all probability distributions p we have I'*(I'(p)) = p. Moreover, for the specific state vy = {dﬁl, ce dw’“ ,
I'(y) =1/N (E10)

is the uniform N-dimensional distribution. Recall that Zle % =N- % =1, and 7 is normalized.

Also, we will be making use of the following simple lemmas, which we state here for the reader’s convenience.
Lemma (13| relates the Rényi divergence D, (p|lq) to Dq(T'(p)|IT'(g)). Lemma [14] describes the change in D, (pl|q)
when p is replaced by a mixture of distributions p and ¢. Lemma is a technical tool that enables us to work
with distributions containing irrational probability values, by introducing small corrections such that we need only to
consider rational values. Lastly, Lemma [16| shows us when a channel can be writen as a direct sum of two channels
acting disjointly on partitions of the total input/output space.

Lemma 13. Let p = {p;}}_, be an ordered probability distribution, and {d;}%_, be natural numbers with Zle d; = N.
Define the following fine-grained, N -dimensional probability distribution

- P1 D1 Pk Pk
p{ cey T e }7

dy’ T dy T dy T dy, (E11)
d1 dk
and let v be the k-dimensional probability distribution
dy dy.
=< —, ..., . E12
gl { N N} (E12)
Then for a € [—o0, 00| we have
Da(pll7) = Da(pllnn), (E13)
with ny = (1/N,...,1/N) the uniform distribution. By (E1Q|), this means that equivalently
Do (plly) = Da(T(p)[IT(7)). (E14)
Proof. Let us first assume that o ¢ {—00,0,1,00}. Then
1 k d. e’
D, = 1 o= E1
i) = e o () (615)
k « 11—«
= 1 d; | = — E1
e (z) () et
1 N 1 11—«
= 1 Tl =D, (p E1
TN (%) = Datilin), (B17)
where note that in the third inequality we sum over the fine-grained distribution p, and for each ¢ € {1,--- ,k}, p

contains d; number of degenerate values L. For o € {—00,0,1,00} one can obtain the relation by considering limits.
Here we show this explicitly. For a = 0 we have

d; 1 )
Do(plly) = ~log Y 7i=—log D = =~log Y~ =Dolllnw)- (E18)
i:p; #0 Jpj#0 ©:P; 70



11

For a — oo, by using (A3)) we have

i . d;
D (p||y) = log min {)\ Vi, A > df}N} = log min {)\ Vi, A > 1//N } s (Bl|InN)s (E19)
and similarly for &« — —oo. Finally, for a — 1,
Di(plly) = sz log " d Zd *1 og? d = D1(pllnw)- (E20)
O
Lemma 14. Let p # q be distributions with q full rank. Then for all o € (—o0,00) and all 0 < 6 < 1,
Do ((1 = 6)p + dqllq) < Da(pllg)- (E21)

Proof. The proof is given separately for different ranges of .

In the range of « € [0, 1], is obtained by the joint convexity of the Rényi divergence, as proven in Theorem 11
of [3]. The special case of & =1 is also proven in [3I]. For any two sets of distributions (A1, By) and (42, Bs), and a
parameter 0 < § < 1, the Rényi divergence in this range of « satisfies

Do((1 —=08)A1 + 6A2||(1 = 6)B1 4+ 0Bs) < (1 —0)Dy(A1]|B1) + 6Dy (Az|| B2). (E22)
Setting By = By = ¢, A; = p and Ay = ¢, then
Do((1=0)p+dqllq) < (1 —9)Da(pllq) +0Da(qllg) < Dal(pllq) (E23)

since D(g|lq) =0, 6 > 0 and D, (pl/q) > 0 for p # q.
For ae > 1 joint convexity does not hold. However, denote r» = (1 — §)p + dq, note that (E21)) is equivalent to

k
Zra l—a Zpiaqilfa. (E24)
=1

We now make use of the fact that the function f(z) = x® is convex for o > 1, over all > 0 (This be checked since
the second derivative of f(x) is positive over the range of > 0). and since each qil_a > 0, the linear combination

qu “p (E25)

is convex w.r.t. p. For any p # ¢, note that F(p) > 1 comes from the positivity of the Rényi divergences, since
D.(pllq) = Sgn(a) log F'(p). Also, note that for a fixed ¢, F(q) = >, ¢; = 1. This implies that for (E24),

LH.S. = F(r) < (1 — 86)F(p) + 6F(q) (E26)
= F(p) — 0[F(p) — F(q)] (E27)
< F(p)=R.H.S. (E28)

For o < 0, whenever the kernel of p is non-empty, D,(p|lqg) = oo, However D,((1 — §)p + dql|q) is finite since ¢ has
full rank, hence the desired inequality holds always. When p also has full rank, the same approach can be used as in

a > 1, since f(x) = z® is also convex for positive x, and since Sganf(?) > 0, (E21)) is also equivalent to (E24]). O

Lemma 15. Let q = {q;}*_, be an ordered (descendingly) k-dimensional probability distribution of full rank, possibly
containing irrational values. Then for any € > 0, there exists a state q such that

(i) llg—dll <e,

(i) Fach entry of G q is a rational number, i.e. there exists a set of natural numbers {d;}¥_, such that ¢ = {%}F,,

with Zi:l d; =
(iii) There erxists a valid channel E such that E(q) = ¢ and for any other distribution p, ||p — E(p)|| < O(V/¢).
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Proof. We prove this by constructing a specific ¢ that satisfies (i) and (ii), then we construct the corresponding channel
E that maps ¢ to ¢. Note that since ¢ is ordered, the minimum value min; ¢; = gi. Firstly, choose any integer N such
that ¢ > TkN > % Now, for i € {1,--- ,k — 1}, define

- [aNT _d;
P = = —. E29
q N =N (E29)
Lastly, choose
k—1 k-1
- - —, d d
k=1-> G=1 Z’Nl t= (E30)
i=1
It is clear that
k—1 k-1
- - N
t-a= Y=y
i=1 i=1
k-1
N | k-1 (E31)
< -
<> 5t
i=1
k
S 1- qk + N?

which means that ¢, > qr — % > 0 from our choice of N, hence ¢ is a valid distribution with rational probability
values, and condition (ii) is satisfied. Note also that the statistical distance between ¢ and ¢ is lower bounded by

k
lo=al=3la—al=5 | 3 @@+ ¥ @-w
i=1

1:¢; >q; 1:q; <q;

Z qi — Gi (E32)

1:q;>G;

5 k
ZQk*Qkﬁﬁzg

which satisfies condition (i) by setting ¢ = %7 which can be arbitrarily small by choice of N. The third inequality

holds because both distributions are normalized,

Z q; + Z q; = Z q; + Z gi =1

1G5 >q; i1 <q; i:q; > i i:q; <Gi
1:q; >q 1:qi<q 1:4i>q 1:¢i <q (E33)
Z 4 — 4 = Z i — 4,
:q;>qi 1:q;<q;
while the fourth inequality occurs since for ¢ = {1,--- ;k — 1},¢; < §; is not included in the summation.
Now, to prove (iii) we need to construct a valid channel, which is characterized by the transition probabilities
P(i — j) going from state i to state j, where for all ¢ € {1,--- |k},
k
> P(i—j)=1. (E34)
j=1

To understand how we construct an appropriate channel, note that the channel has to increase slightly the proba-
bilities g; to ¢; for all i € {1,--- ,k — 1}, while decreasing ¢, accordingly for the normalization to hold.

Bearing this in mind, let us denote the set Z = {i|1 <14 < k — 1} which contains the indices where §; > ¢;. Also
define A; = §; — ¢; and the sum A =}, A;. Note that G = g — A comes from the normalization of §.

Now, let us consider the channel E with the following transition probabilities:

1 for ¢ =j, i,j €T
0 for i # j, i,jEeTL
p(i — j) = —%fori:j:k (E35)
0 for j =k, 1€1
Aj

for i =k, jel.

ar’
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One can verify that the above transition probabilities satisfies (E34]), hence they characterize a valid channel. The
last step is to show that this channel causes only a small perturbation to any other state p.

. A A
lp = E®)I| =pk —Pr = —pr < —. (E36)
gk qk
Note that A = ¢, — g < %, hence
k VN 1 e
_E <<= =N (E37)
e T RV
which holds since € = %, and we have chosen N so that q; > ﬁ O
Lemma 16. Consider a channel such that for some fized n-dimensional probability distribution t = (t1,...,t;,0,...0)
the channel gives output t' = (t},...,1],0,...0). Moreover, A(w) = w holds for some full rank distribution w. Then

this channel can be decomposed as A = Ay @ Ao, where Ay acts only on the first l-elements, mapping them onto the
same group of elements, while Ao acts similarly on the remaining n — [ elements.

Proof. Consider the joint probability of two random variables (X,Y’), given by the preserved distribution w and the
channel. Let X = 0 denote the event that the inputs are from the first group (items from 1 to [), and X = 1 that
they are from the second group (items from [ 4+ 1 to n), and Y denotes similar events for the outputs. Since the
channel preserves w, we have that P(Y = 0) = P(X = 0). Moreover, since the channel sends ¢ into ¢’ , this means
that p(Y = 0|X = 0) = 1. We then have

p(Y =0) =p(Y = 0[X = 0)p(X =0) +p(Y =0|X = 1)p(X =1) =p(Y = 0) +p(Y = 0[X = 1)p(X =1) (E38)

so that either P(X = 1) =0 or p(Y = 0|X = 1) = 0. However, since w is of full rank, we know that P(X = 1) > 0.
Therefore p(Y = 0|X = 1) = 0 must hold. We have therefore that P(Y = 0|X =0) = P(Y =1 X =1) =1
which means that the channel is direct sum of two channels, acting on two disjoint groups of elements {1,--- ,1} and
{{+1,---,n}. O

3. Catalytic d-majorization

In this section, we prove a crucial result (Theorem, which relates monotonicity of Rényi divergences to catalytic
transformations. This can be viewed as both a generalization of trumping relations [24] 25] and the d-majorization
result [30]. It also gives an operational interpretation to the Rényi divergences, answering the question posed in [2].

With the tools listed in Section in place, we can now proceed to state and prove the main theorem of this
section.

Theorem 17. Given probability distributions p,p’,q,q , where q,q" has full rank. The following conditions are equiv-
alent:

(i) For all & € (—00,0), Do(pllqg) > Do (?'||d)-

(ii) For any € > 0, there exists probability distributions r,s of full rank, a distribution p. and a stochastic map A
such that
1. Aper)=p.er,
2 Mq®s)=d ®s,
3 p —pill <e.

Moreover, we can take s = n, where n is the uniform distribution onto the support of r.

Proof. 7 (i) — (ii)”. To prove in this direction, we suppose that condition (i) holds, and construct a channel A that
satisfies (ii), with some ¢ that can be chosen arbitrarily small. Let us consider the following two cases separately:

(A) The probabilities in q and ¢’ are rational. Without loss of generality, they can be written as ¢ = (d1/N,...dy/N)
and ¢ = (d}/N,...,d},/N) for some sets of integers {d;}¥_,,{d;}¥_,, such that Zle di=%F d=N.

i=1""
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With this, define two embedding channels T and T associated with {d;}*_, and {d.}*_, respectively. The fine-
grained distributions of p and p’ are given by

p=T(p) = i pini
P =T'0")=a; v,

where 7;, 7, are maximally mixed distributions of dimensions d; and d respectively. Condition 1 together with Lemma
tells us that

Da(pllnn) = Da(plla) = Da(p'lld') = Da(p'lInn), (E39)

and hence by Proposition |4} we know that for any £ > 0, there exists a distribution p. such that ||p’ — pL|j1 < e and p
can be trumped into p.. Equivalently, there exists a probability distribution r (the catalyst) and a bistochastic map
® such that

P(pr)=pLOT. (E40)

Note that by Lemma r can be without loss of generality be of full rank, or in other words, the zeros in r do not
affect finding such a bistochastic map. More precisely, let us consider the case where r does not have full rank, but
has some rank d instead. Then by setting t = pR7r, t' = p”’ @ r and w = ny ® 1, we can use Lemma [16| to show that
® = ®; @ $y, where the channel &, gives us

i(per)=p"®@r, @1y @nq) =N @ N4, (E41)

where 74 is the uniform distribution on the support of . On the other hand if r is of full rank, then ® = ®;.
Now, consider the following mapping

A= (F'* @D od;o(I'®I). (E42)

This map A transforms p ® r into p” & r, setting e = § satisfies conditions 1 and 3 in (ii). To satisfy condition 2, we
want A(¢® s) = ¢’ ® s for some s. This is achieved by taking s = 7, a uniform distribution of any dimension. Indeed,
since I'(¢) = I/N, (' ® I)(¢ ® n) is also a maximally mixed distribution. Since ®; is bistochastic, it preserves this
distribution. Finally, by definition of I we have I'"*(I/N) = ¢'.

(B) The distributions q or q' contain irrational values. We show that in such cases, a similar approach in (A) can be
used, by considering distributions ¢ which are rational and close to the original distributions. Note that for any real
a >0, Dy(p|lq) is a continuous function of both arguments p and ¢, whenever ¢ is of full rank. For «a < 0, whenever
p does not have full rank, both D, (p||q) and D,(p|¢) diverge to infinity. When p has full rank, continuity can be
obtained by noting that D, (p|lq) = ¢ D1—(g|lp) and D4 (p||q) = ¢ D1_o(q||p) for some positive ¢, and 1 — o > 0,
hence D1_,(q||p) is continuous.

By Lemma [I5] we use the channel E that maps ¢ into ¢ while not perturbing p too much. More precisely, for any
€ > 0, one can define a stochastic map E such that

El@=4q lq—dl <, (E43)

and || E(p) — p|]| < O(y/€) for any other state p. From the above discussion, we conclude that when ||¢ — g|| < ¢, in the
limit of & — 0, condition 1 implies that D, (p||§) > Da(p'||¢") holds as well. Since we can choose ¢ to be arbitrarily
small, in the limit of ¢ — 0,

Do(E(p)|17) = Da(pllg) > Da(P'llg") = Da(p'[17)- (E44)

Following the first part of the proof (which established the result for rational ¢ and ¢') we find that there is a
catalyst r and a stochastic operation A such that

AEp)@r)=p"®r, ME(Q@n) =q @n, (EA5)

with 7 the maximally mixed distribution.
If ¢’ also contains irrational values, we can similarly define a second correction map that maps ¢’ into ¢’ while not
perturbing p” too much. By invoking Lemma [15| on ¢’, we construct E’ such that

E'(7)=¢/, and for any probability distribution r, ||E’(r) —r| < O(v/2). (E46)
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Denoting the inverse of E’ as E™*, hence E™*(¢') = ¢’. Choose an r = E™*(p"), then ||[E'(r) —r| = |[p” — E™*(p")|| <

O(ve).

Our final stochastic map is given by E’* o A o E, where

(E"@D)oAo(Ex)(¢gen) = (E" @I)oAG®mn)
= (E"®D)(d ®n)
=q ®n, (E4T)

and

(E* @l oAo(ExI)(per) = (E" @) o A(E(p) ®r)
= (E"eDp"®r)
_ p/// @, (E48)

with p”” = E™*(p") such that
1" = o < 19" =l + " =" < e+ 0 (VE). (£249)

Since € can be chosen arbitrarily, the first part of the theorem follows.
”(ii) — (i)”. Suppose that for all € > 0 there exist probability distributions r, s, p. and a stochastic map A such
that

Ip" = pllh <e, (E50)
and
Apor)=p.@r, Ag®s)=¢@s, (E51)
and the support of s includes the support of . Then by monotonicity of the Rényi divergences,
Da(pL®@7]l¢ @5) < Da(p@rllg® s), (E52)
which equals
Da(pcllg’) + Da(rlls) < Da(pllg) + Da(rlls), (E53)

by additivity. Since both r and s are full rank, D, (r||s) is finite, and can be subtracted from both sides. Lastly, we
consider the limit p. — p’. Recall that as long as the second argument ¢’ has full rank, for any a > 0, D, (p'||¢’) is
continuous w.r.t. both p’ and ¢. For a < 0, whenever p’ with full rank, continuity holds. If p’ does not have full
rank, lim._,o Do (pL]|¢’) = 00 = Do (P’|l¢"). Hence we obtain

Do (P'|ld") < Da(pllg) (E54)

for all @ > 0 and o < 0. Since Dy(p|lq) = lim,_sg+ Da(pl|q), the above inequality holds also for aw = 0.
O

4. For diagonal input state of the system, a diagonal catalyst is enough

Here we will show that if the initial state of the system is block diagonal in the energy eigenbasis, then the diagonal
of the output state does not depend on coherences of the catalyst but only on its diagonal. This means that if we
are interested only in the diagonal of the output state of the system, we can replace the catalyst with its dephased
version (i.e. put a diagonal catalyst that has the same diagonals as the original one). The conditional probabilities
form the channel, which maps the initial diagonal to the final diagonal of the state of the system. By block diagonal,
we mean that the state can be written as

P:ZUijk\Ei,jMEuM (E55)

where |E;, j) has energy F; and has degenerate levels labled by j.
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To see that only block diagonal catalysts are needed, we write the initial state as
Pisc = PR © p§ © pi, (E56)

where piﬁ is the heat bath, which is of course diagonal, pié‘ is the state of an arbitrary catalyst, and pg’ is the state
of the system which we assume to be diagonal. We then act with an energy-preserving unitary U and get the output
state

Phdc = UpRscU'. (E57)
We now compute the diagonals element of p2*, and will see that they depend only on the diagonal elements of pi%.
We have
(Es|p¥"|Es) = > (Er.Es,Ec|p%éc|Er, Es, Ec) (E58)
ERr,Ec

(here and in the following we sum over energies as well as degeneracies). This can be written as

(Es|p3"|Es) = > > (Er,Es, Ec|U|EREsE¢)(Eg, B, EglpRsc|ER, Es, EG)x
ERr,Ec Ef,E,,E},El,

<ER7E5'7E |UT|ER’ES’EC'>

where we used that p't and p' are diagonal. Since U preserves energy, we have Eg + Es + Ec = Ef, + B + E/ as
well as Er + Es + Ec = Ef, + E5 + Ef.. This implies that Ej, = Ef,. We thus obtain

(Es|p$"|Es) =) p(Es|Es)(Es|pg" | ES), (E59)
E/

where the conditional probabilities are given by

p(Es|Eg) = Z Z (ER, Es, Ec|U|Ey, Es, EG)[*(ER|pR| ER)(Ec|pE| EC). (E60)
ER,EcE’

One easily finds that indeed this is a valid conditional probability distribution.

Appendix F: The Second Laws

In this section we formulate the state transformation conditions, namely the second laws of thermodynamics. We
will first do this for states diagonal in the energy eigenbasis, and then for general state transformations. The former
states are those p which satisfy [p, H] = 0. The conditions are given in terms of generalized free energies, which are
defined as follows:

Folp, H) = =kT[In Z + Da(pllps)l = F(ps, H) + KT Da(pllps) (F1)

where Z is the partition function for the Hamiltonian H, and pg is the thermal state. Note that F is the standard
free energy, and that for thermal states and pure eigenenergy states, all free energies are equal to the standard one.
In Subsection [F4] we will present the quantum limitations which apply to all state transformations.

1. The second laws for states block diagonal in energy

Theorem 18 (Second laws for block diagonal states). Consider a system with Hamiltonian H. Then a state p block
diagonal in the energy eigenbasis can be transformed with arbitrary accuracy into another block diagonal state p' under
catalytic thermal operations if and only if, for all a € (—o0, 00),

Folp,H) > Fo(p', H). (F2)
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Remark 19. By continuity, the conditions can equivalently include oo = 0o, —00.

Proof. We will prove it using Theorem Consider initial and final states of the system pg and py. Suppose first
that for o € (—00, ), equation (F2)) holds, which is equivalent to

Da(psl0) = Da(ps||02)- (F3)

We now need to show that one can transform the state pg into an arbitrary good version of ply by catalytic thermal
operations.

We denote p and p’ to be eigenvalues of pg and pl respectively, and ¢ = ¢’ = pg ® p2... Then, using Theorem
we get that there exists a channel A and uniform distribution 7 such that (i) A preserves the state ¢ ® n, (ii) A sends
p ® r into p. ® r, where p. approximates p’. Condition (i) means that we can take the catalyst system with trivial
Hamiltonian. Thus we have

Alps ® pc) = p§" © pe, (F4)

out

where ||pg"" — ps|| < € and
AP ® Plne ® PE) = P © Plne © P, (F5)

where pg is the maximally mixed state on catalyst system C', i.e. A preserves the thermal state of the system SC and
the ancilla. However thermal operations are precisely the operations that preserve the thermal state [1} [16]. Thus the
required transition can be made by catalytic thermal operations.

Conversely, let us assume that for given states pg and ply there exists a quantum channel A, and a system C' with
the hamiltonian H¢, and state pc such that

AP ® pl) = pe ® pey Alps @ po) = p3 ® po-. (F6)
where [|p%" — p|| < e. Now, let us note that by thermal operations, one can make any state diagonal in the energy
basis, namely one can apply random phases (by using the Birkhoff primitive of [I7] which supplies random noise and
unitaries that change phases). In Sec. we have shown that since the input and output states are diagonal, we can
take the state pc to be diagonal too, and the above condition reads

Aa(g®s)=q®s, Aalper)=p.@r, (F7)

Thus we can apply theorem [I7, obtaining that

Da(psllps) = Dalpsllo2) (F8)

for all real o which is equivalent to (F2)). O

2. Getting rid of second laws with negative «

In the paradigm of catalytic thermal operations it is assumed that the catalyst is returned exactly. If we had
required that the catalyst is returned only with good fidelity, all restrictions would be lifted, and there will be no
conditions for thermodynamic transitions at all. This happens when the catalyst’s dimension is free to be arbitrarily
large. In such cases, fidelity is not a good criterion for closeness any more (we discuss this in more detail in Section
of the Supplementary Information).

However, in addition to the catalyst, we can consider borrowing some system with fixed size (e.g. a qubit) in a pure
state, given that we will return it with arbitrary good fidelity. As we will argue now, this will lift all the conditions
on negative ov. However since creating a pure state from a thermal state without additional resource requires infinite
work, we will also consider approximate versions.

Here is the result, where we allow the use of an exactly, pure qubit.

Theorem 20. If we can use catalytic thermal operations, and are allowed to borrow a qubit with a trivial Hamiltonian
in the state |0)(0| and have to return it with arbitrary accuracy, then a state p block diagonal in the energy eigenbasis
can be transformed with arbitrary accuracy into another block diagonal state p’ if and only if, for all & >0

Fo(p,H) > Fo(p', H). (F9)
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Proof. Suppose first that one can transform the state ps ® |0)(0| into arbitrary good version of p'y ® [0)(0]. Then we
proceed as in the proof of Theorem [17] using monotonicity, additivity of D, and noticing that D, is finite for |0)(0]
for o > 0, we get

Da(psllp2) > Da(ps|Ip3) (F10)

for a > 0, so that conditions are satisfied. Conversely, assume that the latter conditions are satisfied (hence
equivalently hold). However for o < 0, D, is infinite on the left side, and finite on the right, if for the
output side we return the qubit in a state which is of full rank, but arbitrarily close to it’s original state. Moreover
Da(ps @ [0)(0] [|psgc) = Dalpsllpsg) + Da(|0)(0] ||ps) and same for S’. Thus we get that for all real «

Da(psllps) = Dalpsll0g). (F11)
and by Theorem (18| we can transform the state ps ® |0)(0] into arbitrary good version of p'y ® |0)(0]. O

We thus borrow a pure state qubit, and return it with full rank, but arbitrarily close to being pure, to get rid
of the conditions for negative . However, let us note, that we might borrow a noisy version of |0)(0| namely
(1—¢€)]0)(0] +€[1)(1]. It costs a finite amount of work to create it from the thermal state. If F,,(pl¥, H) > F,(p2", H)
for aw > 0, we can pretend that the ancilla is in pure state |0)(0| and apply the map from Theorem We will obtain
the output state arbitrarily close to

(]‘ - 6)p(§Ut ® |0> <0|anc + 6p/S,amc' (F12)

We can then return the ancilla in the same state (by depolarizing a bit if needed), and obtain the output state pg**
with accuracy € in trace norm. However as we will discuss in section [G] if there are no further restrictions on the
available catalyst, then closeness in trace distance is not a suitable demand on the returned catalyst in thermodynamic
transformations.

3. Borrowing ancilla with a nontrivial Hamiltonian

There is another approach, that might eliminate some of the conditions [F2] yet is again not acceptable. Namely,

we can borrow a qubit with nontrivial Hamiltonian H = E|E)(E| in state p. = (1 — €)|0)(0] + €|E){F| and return
thermal state pg. If we take ¢ > efzﬂE, we have ||p. — pgll1 < e. On the other hand, for any a > 1, if we set e.g.

€ = 1/E? and use the approximation that E is large, then we have
1 1\ [, e PEN'TY 1\ (e BENITY
Do (pe = 1 1-—= 1— —
(plos) a_log[( =) (-%) +(&) ()
1 1\ (e B2\
(=) (=)

a—1

—BE
VA
log E,

vV

log

(F13)
«Q 1 e
> a—llOgﬁ_IOg

1 2
> —f(BF —
_ln25 a—1

which diverges for large F. Here, we used the approximation that the first term in the logarithm does not contribute

— —« —
much, since (e ZBE) is large for @ > 1. Furthermore, Z =1+ £ ;E ~ 1. So, if we consider the transition

p§ @ pe = p* @ pg, (F14)

then for any fixed cvg > 1, if we pick high energy F, we obtain that the D, of the left hand side can be arbitrarily large,
and the transition is possible, once conditions for a < « are satisfied. However in this approach, we are allowed to
borrow something very expensive, in the sense that it requires a large amount of work to be created from the thermal
state, and return something useless - a thermal state. In other words there is a large work distance between the state
we return and the state we have borrowed (see section [G 3)).

It is interesting to compare the two situations: to eliminate negative o we borrow a pure ancilla state. The
Hamiltonian of the ancilla is trivial, and the state is much more pure than the thermal one. That’s why it is
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(infinitely) expensive. To eliminate o > 1, we have the opposite: we take a Hamiltonian of the ancilla, such that
thermal state is very pure, and we borrow a state which is more mized than the thermal state, and for this reason
also expensive. If we borrow both ancillas, we are left with conditions « € [0,1 + ¢], with § depending on how large
an energy we will have in one of the ancillas.

4. Quantum second laws: limitations for states that are not diagonal in energy basis

For states that are not diagonal in energy basis, we report the following limitations:

Proposition 21 (Quantum limitations). For a state p to be transformed with arbitrary accuracy into another state
P’ (both not necessary diagonal in energy basis) we require

i) For a > 3,
Sa(pllps) = Salp'lps), (F15)
i) For 3 <a <1,
Sa(psllp) = Salpslle’), (F16)
iii) For —1 < a < 2,
Sa(pllps) = Salpllps)- (F17)

This proposition follows directly from monotonicity under completely positive and trace-preserving maps, and
additivity of the quantum Rényi divergences associated with the generalised free energies, as discussed in Section [A 3]
E.g. we have

a(A(p)[|A(ps))

o(0'llpg) (F18)

Sa(p llps) =S

> S
with the first inequality due to monotonicity of S, under completely positive trace-preserving maps A, and the second
line following from the fact that if A(p) = p’ is a thermal operation, it preserves the thermal state. The reason for
considering condition only for % < a < 1,is that for a > 1, the entropies would diverge for non full rank catalyst,
so may not be monotones if we use such catalysts. As before, by using a pure state which is returned arbitrarily close
to pure, we will automatically satisfy Equation for @ < 0 and we may thus only consider 0 < a < 2.

These conditions are like second laws, in that they are necessary conditions which must be respected during a
thermodynamic transition, however, they are not sufficient. This follows from the fact that there are operations which
preserve the thermal state, which are not thermal operations, and which can transform a state which is block diagonal
in the energy eigenbasis, to one which is not [32]. Such a transition is impossible by thermal operations since thermal
operations cannot transform a block diagonal state to one which is not. However, such a transition will respect any
second law which also hold for operations which preserve the thermal state, as is the case with our quantum second
laws.

5. Application: Landauer erasure with a quantum Maxwell demon

As an application of the above second laws, we consider a special case of a Maxwell demon with a memory @ in
state pg, who wants to reset a system S in state pg to some pure state. One imagines that the demon’s memory is
correlated in some way with the system so that the total state of demon plus system is psg. The demon wishes to
reset the state of the system by transforming it to some pure state, but the state of the demon’s memory should not
change. This can be seen as a fully quantum version of the standard Maxwell demon/Landauer erasure scenario, and
has been considered in the case of a trivial Hamiltonian[33], 34] and when the Maxwell demon does not have access to
ancilliary systems. The result of [33] gave a thermodynamic interpretation to the notion of negative information [35].
We will see here, that the amount of work which is required for such an operation, is quantitatively different when all
thermodynamical operations are considered. This suggests that in the single-shot scenario with ancillas, the notion
of partial information takes on a different form, which we shall now derive.
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In fact, the result follows immediately from the work distance of Equation (??), namely, we have that the cost of
resetting the system Wieser to the pure state 1% with energy E is given by

Wieset = — igf kT[Da(pQSHpﬂQs) — Da(pg ® ﬂ’g”pﬁQs)}
= —inf kT[Da(pesllpsgs) — Dalrellpsg)] + E + kTlog Zs (F19)

In the case when the Hamiltonian is trivial, this reduces to

Wieset = KT Sup[Hoc (pQS) —H, (pQ)} (FQO)

When this quantity is negative, the demon can reset the system to a pure state, and not only does this not cost work,
but the corresponding amount of work is actually gained. Not only can thermodynamical work be negative, as shown
in [33], but for the single shot case, it can be even more negative! In the sense that catalytic operations can be used to
gain more work than would be otherwise possible. Note that this gives the difference of Rényi entropies of Equation
(F20f) an operational interpretation, very similar to that enjoyed by the conditional von-Neumann entropy in the case
of identically and independently distributed states. Finally, in the case of standard Landauer erasure of a qubit with
a non-trivial Hamiltonian (where we don’t have a memory and start in the thermal state), Equation gives what
you might expect, namely Wieset = E + kT log Zs.

Appendix G: Approximate catalysis

So far we considered exact catalysis, i.e. the process is perfectly cyclic and the catalyst should be in the same state
as it initially was. However, this is usually an unreasonable demand because in physical processes there are some
unavoidable inaccuracies. Therefore, we ask what are the conditions for transformations, when the catalyst p& can

be returned in a state p&' that is merely ”close” to the initial state.

1. How to quantify ”approximate”

As already discussed in the introduction, it turns out that what is meant by ”close” matters greatly. At first glance,
one might be tempted to demand that close should mean that pi% is close to p&' in terms of the fidelity, or essentially

equivalently, the trace norm distance. The trace norm distance between two states p and o can be written as

lp = olly = jmax tr[M(p—o)] . (G1)

We say that p and o are e-close if ||p — o|l1 < e. It enjoys an appealing operational interpretation as being e-close
in trace norm distance means that if we were given states p and o with probability 1/2 each, then our probability of
correctly distinguishing them by any physically allowed measurement is bounded by 1/2 + €/2. In other words, being
close in the trace distance means that the two states cannot be distinguished well by any physical process [45]. In
terms of the catalyst, one might hence ask that ||p}% — p2t||; < € for some arbitrary small e. This would be a mistake

as we will see.

2. The embezzling state dilemma: when there is no second law

As mentioned already in the introduction, there is the phenomenon of embezzling [36] in entanglement theory,
where at an expense of increasing the size of the catalyst, one can perform arbitrary transformation with arbitrary
good fidelity, while returning the catalyst in a state arbitrarily close to the initial state. More specifically, for H = 0
we can adapt the results of [36] to show that for any ¢, there exists a dimension d such that using the catalyst

; 1 K1
pé = =~ D =Dl (G2)

C(n) ; j
allows us to transform any state p e-close to any state p’ such that |[p2* — pit||l; < e. Here, C(d) is a normalisation
constant. In particular, there exists an n large enough, such that for any €, we can use p& to erase a state ¢ =
o pili)(i] to |0) via a unitary transformation taking p% @ ¢ to a state close to pi& ® |0)(0]. We first apply a unitary
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on the state pié‘ ® ¢ to produce a state w = > ") ¢;]i) <2| such that the eigenbasis of w is the same as piél ® ¢, and
the probabilities ¢; are the same as the eigenvalues of p% ® ¢, but in decreasing order. One can then show [36] that

>-;V4j/iC(n) goes to 1 as n goes to infinity, which implies that the fidelity F(w,p) = tr/wy/p% — 1. Since the
fidelity upperbounds the trace distance via F(w, pi) > 1 — 1w — pi%| we have the desired result.
Another example of embezzling work occurs with H = .J and the pure state coherence resource used in [I7]

1K
) = i ; 17) (G3)

with |j) energy eigenstates. If we apply the energy conserving operation which takes [0)s|j)c — [|1)s]j — 1)¢ to the
state |0)s|¥)¢, then by increasing d, the catalyst will be left in a state arbitrarily close to it’s original state [¢) in
trace distance, even though one unit of work (energy) has been transferred to the system.

Demanding that the catalyst be returned close in the trace distance is thus too weak a condition. Intuitively, the
reason why it is too weak is that we may still need to consume much work to obtain the original catalyst from its
returned version.

If we therefore concieve of an approximately cylic process, as one which the working body is returned in a state
which is € close in fidelity to it’s original form, then there is no second law. All state transformations are possible.

3. The work distance

We thus take an operational perspective on the problem of inexact catalysis. More precisely, we propose to take as
a reference point, exact catalysis, and require that the catalyst should be returned in a form such that, only a small
amount of work is needed in order restore it to the original form. This is natural, in the sense that if someone loans
you a catalyst, then they would want it returned in such a way that it would not require a large amount of work to
return it back into it’s original state.

We thus consider the inexact transition

e @ pE — P (G4)
and require that to obtain from p%¢ the original state of the catalyst and the required output state of the system, we
need not input more than a small amount of work.

This prompts our definition of the work distance below. To make this precise, let us take a closer look how one
can derive upper bounds on the amount of work needed for state transformation, namely to restore the catalyst to its
original form. To input this amount of work, we can append a battery to either provide or extract work, to facilitate
this transformation. We then apply our conditions for state transformation to the state and the battery together.
The battery we use is a two level system called a wit, or work bit, introduced previously in [I]. The wit initially starts
out in the energy eigenstate w; = |0)(0| which has energy F; = 0. At the end of the process, the battery is in another
energy eigenstate wy = |W)(W|, having energy W. W can be either negative or positive, depending on whether work
is used from or stored in the battery system. This means that the following transition is possible

pEE @ 10)(0lw — pS @ p @ W)W |w, (G5)
while the thermal state of the battery system is given by

e VW) (W] + [0){0]
W = 13 =W ) (G6)

with 8 = ﬁ, k being the Boltzmann constant and 7T being the temperature of the bath that is in contact with the
system and battery. For this transformation to be possible, it is required in Theorem [I7] that the following conditions
hold for all a > 0,

Fo(p2 @ p2 @ willpsg ® psp ® Tw) > Falp2™ @ p @ willpss ® ppe @ w)- (GT7)

Since the initial, final, and thermal state of the battery is known and depends only on the parameter W, we can then

derive an upper bound for W from (G7) and (G6) as

kT
a—1

1
1+4+e AW

-«
ou kT
| 2 Falognsg) + J o o |

Fo(pdllpss) + (G8)

e*ﬂW 11—«
1+e AW

log [
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Rearranging yields

Fa(PSllpss) = Fa(p§"llpss) + W (G9)
which yields the following upper bound on W
W < Fo(pSllosg) — Falpg™ l0ss)- (G10)

In essence, the possible transitions are governed by Rényi divergences, up to tolerance W, which we choose. Since W
has to be smaller than the above bounds for all positive alpha, the maximal amount of work extractable for such a
process, going from p to p’ will be given as

Dwork(p = p') = inf [Fa(pllpg) = Fal(p'llps))- (G11)

where we refer to Dyork(p = p’) as the work distance from p to p'.

It is interesting to see how the conditions presented in [I] arise as special cases of our conditions, and are hence
independent of a catalyst. In [I], the extractable work from a state (by thermalizing it) and the work cost for its
formation (starting with a thermal state) via thermal operations have been given by

Wext(p) = —kTlogtr(Il,pg) = kT Do(p||pp) (G12)

Weost(p) = KT logmin{X : p < Apg} = kT Do (pllpp), (G13)
The subsequent corollary shows that the work distance reduces to these quantities.
Corollary 22. Consider initial and final states p and p':
o If p is the thermal state, then the mazimum extractable work Wex(p) = Dworc(p = p').

e If p is the thermal state, then the minimum work cost Wcost(p’) = —Dyork(p = p').
Proof. If p' = pg, then Vo, D, (p'|lps) = 0, hence

Duork(p = p/) = KT - inf Da(pllps) = Wexs(p),

where the last equality holds due to the fact that the Rényi divergences are non-decreasing in positive a.. If p = pg,
then similarly

~Duworic(p = ) = =kT - inf [=Da(e/llpp)] = KT -sup [Da(p'llps)] = Weost (¢)

O

Let us now return to the discussion of catalysis, where we demand that the catalyst is returned, such that the work
distance for resetting the catalyst to it’s original state is small. In the case where inexact catalysis occurs, we are
allowed to borrow a catalyst p5 and conduct the transformation p§ ® pc — p%d. If this transformation is allowed

via thermal operations, then we know for all a > 0,

Fo(p§ ® p&.pps @ psc) 2 Fa(p$E, pps @ psc)- (G14)

Consider the restrictions as follows: if p%¢ = p%"* ® p2'™ is of product form(see our previous discussion at the start

of Sectlonlon why this is required)[46] , and if the cost of restoring the catalyst has to be small, —D(p2'* > piZ) < ¢,
namely D(p&'* = piB) > —¢, then

F,(p2 @ p8. pps ® pac) > Fa(pF™, pss) + FalpS™, psc) (G15)
Fo (P8, pas) = Fa(p2™, pas) + Fa(p@™, psc) — Fa(p&, pac) (G16)

> Fo(p3™, pps) + mf [Fa(pS™, psc) — Fulpd, psc)] (G17)

Z F (p%utapBS) — g, (G18)

which tells us that our second laws are recovered.
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4. Small error per particle — recovering the free energy

We now consider the regime where we allow a catalyst to be returned with accuracy ||p% — p2t|l; < €/log(N)
where N is the dimension of the catalyst. I.e. the error per particle is small. We will see in such a case, we recover
the ordinary second law.

a. Trivial Hamiltonians — recovering the Shannon entropy

Let us again first consider the case of a trivial Hamiltonian. In particular, we will see that in the extensive regime
only the Shannon entropy matters, and the Rényi entropies are no longer relevant. This shows that if we relax the
conditions on how cyclic the process is, by allowing relatively large inaccuracies in the returned catalyst, then we
recover the usual second law.

Theorem 23. Let € > 0 and let p = spec(p) and g = spec(p’) be the spectra of the input and output state respectively
which are diagonal in the same basis and have dimension d.
If there exists a catalyst with spectrum r = rx of dimension N such that

9
PRT =5, HS_(]®7"||1§M, (G19)
then
elog(d) €

with h(z) == —xlog(x) — (1 — x)log(1 — x) the binary entropy.
Conversely, if

H(p) < H(q), (G21)
then for all N sufficiently large there exists a catalyst with spectrum r = ry of dimension N such that

PRT = 8, IIs — ¢ @ r||1 = exp(—cy/log(N)). (G22)

for some constant c.

Proof. Suppose there is a catalyst with spectrum r such that Eq. (G19)) holds true. Then by Fannes inequality,

B . elog(d) €
1) - Hgonl <o+ LD wn () (G23)

and Eq. (G20]) follows from monotonicity of entropy under stochastic maps.
Conversely, suppose Eq. (G21)) holds. Then we know that for all n sufficiently large we have

P - g (G24)
with
llgn = ¢*"[lx < exp(—cv/n). (G25)
Let us consider the following catalyst introduced in [37]:
w=pPr Vg pPrVgea.. . ope¢®"? @ ¢®"V/n. (G26)
We have
PRw=p2"®p? " Veqe... 0p*2 2" 2 epe " /n. (G27)
Then by Eq. ,
PRW s (G28)
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with
5=¢ ®p°" Ve¢a.. . 0p*?2¢*" D ape @ V/n. (G29)
The result follows from the bound
Is =g ®@wllt = lgn — ¢¥"[l1/n < exp(—cv/n), (G30)
and the fact that the dimension of w is N = n2"~1. O

Note that in the above we do not have a condition that the states are diagonal in the energy eigenbasis because all
states are diagonal in the energy eigenbasis of the trivial Hamiltonian.

b. General Hamiltonians

Here we prove a result analogous to the one of Section [G4d in terms of the free energy and for systems with a
non-trivial Hamiltonian As above, we find that if we relax the condition on how cyclic the process must be, then we

recover the usual second law. Below by pT—Q q we mean that one can go from p to ¢ by thermal operations.
Theorem 24. Lete > 0 and let Hg be the Hamiltonian. Let p = spec(p), ¢ = spec(p’) be the spectra of the input and

output state, respectively, which are diagonal in the energy eigenbasis. If there exists a catalyst with spectrum r = ry
of dimension N (with some Hamiltonian He ) such that

per’s, Is —g @l < max{log(jV),Emax}’ (G31)
where Emax 18 maximal energy of the Hamiltonian Hg, then
Fio) 2 Py~ 2= S8 (5, (G32)
where F' is the standard free energy ' = E —TS.
Conversely, if
F(p) > F(q), (G33)

then for all N sufficiently large there exists a catalysts with spectrum r = ry of dimension N such that

porYs, Is — g @ 7|y = exp(—Q2(y/log(IV))). (G34)
Proof. Suppose there is a catalyst r such that Eq. (G31)) holds true. Then by Fannes inequality,

elog(d) €
|H(s) — H(g®r)| <e+ Tog (V) +h<10g(N)). (G35)
Also,
|E(p) — E(g)| < ¢ (G36)

Therefore |F(p) — F(q)| < 2e + i;g%ﬁ? +h <1ng]\,)) which gives (G32).
Conversely, suppose that (G33|) holds. Then from the main result of Ref. [I7] we know that for n sufficiently large

P g, (G37)
with
llgn — ¢®"[l1 < exp(—(y/1og(N))). (G38)

We then consider a catalyst with the following Hamiltonian:

He = &j_y y_HY (G39)

i=1



25

nterms
where Hg) =1...8 Hs QIl®...®1I and the state of catalyst of the form (G26[). We have
~—~
i-th site
1 on - RN .
pOw= P OL, W=D g (G40)
Now, let us note that
1 1
a0 oa g, (G41)
n n

Indeed we first apply the operation that switches the energy levels from the first term of the direct sum with the
levels of its last term. Then we apply to the levels of the last term the operation that transforms p®™ into ¢,,, which
was shown to exists in Ref. [I7], as metioned above. Then we reverse the above switching operation. Now, the result
follows by

o1 1 o
lw®qg—0® =qn|l < —|¢®" — qull, (G42)
n n

(G38)), and the fact that the dimension of the catalyst is N = n2"~1. O

c.  Small average work

In Ref. [38] a paradigm of drawing average work was put forward. One starts with system in state pg‘ and work
register in some initial state piv‘{,, and applies thermal operations to get the work register in a new state p§*. The
average work is the difference of average energy of the initial and final state of work register. This is because one can
show that the protocol of drawing work in Ref. [38] is such that while repeating it with many independent systems
onto the same work register, its state becomes highly peaked around some fixed energy without degeneracies.

In [38] it was shown that if p and o satisfy F(p) > F(o) then one can perform the transition, without spending
average work (that is, such transition, may need sometimes a lot of deterministic work, but sometimes one gets the
work back). It is reasonable to assume that in the case where a catalyst is used many times over many cyclic processes,
then one might not care how much work is required to return the catalyst to it’s original state, but rather, one might
only care about how much work is required on average. Indeed, if the catalyst is used many times independently,
then by the law of large numbers, the averages work with high probability will converge to some deterministic value.

In such scenario, we are allowed to return the catalyst close to the initial catalyst, in the sense that by spending
an € amount of average work, one can go back to the original catalyst. According to [38] this means that

F(pi2) > (o) — e. (G43)

We shall now show, that within such paradigm, if for two states we have F(p') > F(p%"*) one can make transition
out

pI — p¢t. Indeed, suppose now that F(pl¥) > F(p2'). From the previous section we know that the following
transition is possible

pE @ pd = (G44)
where ||7 — p2* ® p2|| < exp(—Q(y/(log N)), with N being dimension of the catalyst. Let us argue, that therefore

the free energy of the states m and p%'* @ p% are close. First, the entropies are close, by Fannes inequality: |S(7) —

S(p2" @ p#)| < log N exp(—Q(y/1og(N))). Let us now estimate the energy difference. Applying the reasoning from
section we have that diagonal of 7 is given by @ @ Lo, and diagonal of p3"* ® pif is w @ pP* = @ @ pte™,
where o, is a state which can be obtained from p®" by thermal operations (as proved in [I7]). The state o,, satisfies

l|on — p2H®™]| < exp(—(y/log(N))) and both o, and p%'*®" have Hamiltonian ;. , Hg). Thus we have

E(r) - E(p§" ® pg) = % (B(pg"®") = B(og)) < E3™[pg"®" — onlle < E§™ exp(—Q(y/10g(N)))  (G45)
Where Eg** is maximal energy of a single system S, which is some constant, independent of the size of catalyst.

Now, since the free energies of the real output state m, and the ideal output are close, then one can convert 7 into
pYt ® picrl, by investing an amount of work exponentially small in the catalyst dimension N. Thus, if the customer
hands to the bank the state m the bank can regain the original catalyst and return the required output state of the
system to the customer.

Note, that we assumed that the in order to return the catalyst to it’s original state, one can act on the whole state
of the system and ancilla, while more naturally, one should act only on the catalyst. It is an interesting open question

whether these two assumptions are equivalent.
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Appendix H: Proofs of properties of Rényi entropies and divergences

In addition to collecting and proving useful properties of the Rényi divergences, we show in this section that by
allowing error terms which are independent of the dimension of our system, the Rényi divergences needed for our
second laws can collapse to just two quantities.

1. Smoothing of Rényi entropies and divergences

Note that the entropies and divergences are monotonic in « (decreasing for Rényi entropies, and increasing for
Rényi divergences). The inequality, however, can be reversed if smoothing to a nearby state is allowed. It should be
noted that we have explicit methods for smoothing in the regions @ < 1 and « > 1, but otherwise independent of the
value of a.. Nevertheless, our result give general relations in terms of so-called smoothed entropies and we will hence
include them here for completeness.

a. Definitions of smoothing

Besides the exact Rényi entropies, their smoothed versions have also been considered in [39, 40], such that conti-
nuity with regard to small changes in probability distribution is preserved, and these quantities have more physical
interpretations in terms of operational tasks. Their definitions are as follows:

max Ha(p) (a <0);
(p) = § min Ha(p) (0 < <1); (H1)
max H,(p) (a>1).

H€

(03

where optimization occurs over sub-normalized states that are e-close to p in terms of trace distance. Mathematically,
B € B(p), for B(p) = {p: 5 X, [pi — bi| < ¢}
The smoothed Rényi divergences are similarly defined, by smoothing over the e-ball of subnormalized states for the
first argument, where maximization/minimization is taken depending on a. Formally,
min Da(pllg) (o <0);
D;(pllg) = § max Da(pllg) (0<a<1); (H2)
min Da(pllg) (o> 1).

where optimization occurs over sub-normalized states that are e-close to p.

b. Technical lemmas

These quantities will be useful in considering approximate state transformations, where getting into any state close
to the target state is sufficient. Also, smoothing allows us to reformulate an infinite families of conditions on the
a-Rényi entropies to only two conditions, if states in the e-ball of the original state are allowed. We express this in
terms of the following lemma.

Lemma 25. Given any distribution p, for 0 < a < 1 and € > 0, there exists a (sub-normalized) distribution p’ € B¢(p),
such that
log &
Ho(p) > Ha(p) > Ho(p') - T—a

For a > 1, there exists another smoothed distribution p" € B¢(p), such that

> Hq (p) > Heo (p)
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Proof. To prove this statement, we construct such a smoothed state p’ which is within the e-ball of p, and show that
the inequality above holds. A construction of p” can be found in [4I] for a > 1.

Note that the elements p; = 0 do not contribute in our calculations, furthermore the quantities we calculate are
invariant under permutations of . Hence, without loss of generality we can arrange them such that p; < ps < --- < p,,.
For any €, denote j as the maximum number such that

L. Zgzlpi <e

2. 3504 i > e
The smoothed probability distribution p’ is then obtained by cutting all probabilities p; where 7 < j. Also note that
for i < j, ps < pj+1. Now, we evaluate a lower bound for the following quantity:

Jj+1 Jj+1 Jj+1

1-a
Zpl >sz >Zp pin]le:pz>ijrl e > [rank(p')] " -

where the third inequality holds because @ — 1 < 0, and the last inequality holds because p; 41 is the minimum value
in the smoothed distribution p’, and therefore must be smaller than m. Taking the logarithm and dividing by
1—a>0,

Ha(p) =

— g ;Pa(xi)

log =

> log rank

> log rank(p’) — ==

log 2

> Hy(p

> Ho(p') — 1—a
It is worth noting that in extreme cases, where smoothing cannot be performed, the bound becomes trivial. To see

this, note that the minimum value p; < %, where n is the rank of p. If one cannot smooth at all, then € < % The

bound then translates to

log %

Ho(p') — I—a

1
<logn — logn < 0. (H3)
11—«

This means that for values of € < %, the bound simply becomes trivially H, (p) > 0.
O

From this lemma, combining with the fact that the smoothed entropy H§(p) is obtained by minimizing over all
subnormalized states in the e-ball of p. More precisely, Hj(p) = mingepe(p) Ho(p) < Ho(p'). Hence, it is easy to obtain
a corollary that corresponds to Lemmas 4.2 and 4.3 as stated in [41].

Corollary 26. Given any distribution p, for 0 < a <1 and € > 0,

. log%
Ha(p) 2 Hy(p) = 1=
Fora>1,
log L
H,(p) < H —c
(p) < Hio(p) + =5

From Lemma we know that the Rényi entropies collapse to two smoothed quantities, the Ho(p) and Huo(p)
for 0 < @ < 1 and « > 1 respectively. In the next two lemmas, we show similar results for the smoothing of Rényi
divergences. Our proofs will be constructed in a similar way as the above proof, namely, we will specify the smoothed
states within some e-ball such that the desired inequality holds, then link this to the smooth min- or max- divergence.

Lemma 27. Given probability distributions p,q such that supp(p) C supp(q). Then for a > 1 and € > 0, there exists
a smoothed distribution p’
log %

Da(pllg) > Doo(p'llg) — — T
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Proof. Note that we require supp(p) C supp(q) so that D (p|lq) does not diverge to infinity. Now, let us consider the
set Zs = {i: % > §}. Then the smoothed probability distribution p’ is defined by having p, = § - ¢; for all ¢ € Zs.

The statistical distance between p and p’ is
d= Z[pi—pé] < szv (H4)

1€EZs €25
note that d can be made equal to €, by tuning § in a continuous manner. Then, we have
Dos(p'llq) = log max — =logJ. (H5)
qi

We now evaluate a lower bound on

zi:p G = Pl =Y b [} : >607h Y g >0 e

1E€EZs 1€EZs 1€EZs

where the first inequality holds because of the positivity of p; and g¢; for all i, the third inequality holds since « —1 > 0,
and the last inequality holds due to (H4)). Then, taking the logarithm, and dividing the whole equation by o — 1, we
have
log e
1 Fq; .

€
= = Doellla) +

Da(pllg) = (H6)

O

Lemma 28. Given probabilty distributions p and q. Then for a < 1 and € > 0, there exists a smoothed distribution

p’ such that
log %
1—a’

D.(pllg) < Do(¥'|lq) + (H7)

Proof. Similarly in the proof of Lemma we define a particular smoothing of p, called p’. Note also, that terms

Dz, = 0 or ¢, = 0 are automatically discarded because they do not affect our calculations in any way. Firstly, we
order the values % < 5—2 <. < %. Subsequgently, we find an integer j such that the two conditions below are
satisfied:
1. ngl Di S €,
2. Z] >
Note that Do(p'||q) = —log > i —jt13i- Also, for any i > j + 1, & b= Zjii
With this, we can evaluate the following bound:
- q - q
i+1 i+1
Doas e Y pS e
i—jt1 Pj+1 Pj+1

subsequently, we can evaluate a lower bound on the following summation:
Jj+1

n
Yo=Y el
=1 =1
Jj+1 a—1

Zsz { }
—p a—1 Jj+1
j+1
Pj+1 ST
_Qj+1} ; '

—p a—1
I+1
ﬁ} e
Ldj+1

Y

v

r a—1

1
— . 67
_Z?:jJrl 4i
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where the second and fifth inequality holds since o« — 1 < 0, and others by srtaightforward manipulation.
It is useful to see that even for the case where j = 0 where no smoothing is possibly done, the proof still holds since
now we know that € < p1, where p; is the value that corresponds to the minimum in 2 —_ Note that in this case,

a—1
Zpa ez (B s (1)

q1

This comes from two facts: p; > €, and the fact that % < 1. To see why this is the case, let us prove by contradiction,
i.e. assume that % > 1 and all other Z—Z > 1 also. Then for each i, p; > ¢;, and >.."  p; > >.i; ¢; = 1 which is
impossible. O

With these two lemmas, two simple corollaries with regard to smooth divergences can be obtained:

Corollary 29. Given distributions p and q. Then for a > 1 and € > 0,

. log %

Da(plla) 2 Dec(pllg) — ——7- (H9)
Corollary 30. Given distributions p and q. Then for a <1 and € > 0,
. log 1

Da(plla) = Di(plla) + 1~ (H10)

We have also investigated the Rényi entropies for the a@ < 0 regime, and shown that they are monotonically
increasing in a. Although they are not required for our work upon elimination of negative «, we also state them here
for completeness.

Theorem 31 (Jensen’s inequality). For any convex function f, the following inequality holds:
i ) Z a;

The inequality is reversed for concave functions.

Using Theorem we will prove the following lemma about the monotonicity of H, (p) in the negative o regime.
Lemma 32. For Vo' < a <0, Hy (p) < Hy(p) for any probability distribution p.
Proof. For a < 0 and probability distribution p, H,(p) = ﬁ log >, p*. For convenience of dealing with positive

numbers always, we rewrite this expression by defining a variable K = —«, and for k € (0, 00), define
R ~1
Hi(p) = 1 ¥ =Hu(p), H12
() = 7 ngi:xz (p) (H12)
where z; = for all i. We then prove that BH (p ) <0.

O0H,(p) 1 1 1
= I k- - A i
I R B Ty 2

1 1 K K K
=TT |2 los | 2o | — () 3w loga
A j i

1 1 K K K K
(1 )7 Z o E zy log E o E x5 logatsglJr am (H13)
i ] i

By defining the function f(z) = xlogz which is convex in R, we can apply Theorem [31| by setting a; = x;l =p;

and y; = x; 7%, This implies that

> aplog | Yooy | = D wfloga ™| <0 (H14)
% J %

and hence (H13)) is upper bounded by 0 due to the positivity of the first two terms. O



30

2. Smoothing relations

It turns out that our infinite set of conditions can often be verified by checking just two conditions in an approximate
sense. This applies to the case where only the conditions for a > 0 are relevant. However, as we will argue later this
is generally sufficient.

Let us first explain how this works by considering only the Rényi entropies, which are the relevant quantities when
the Hamiltonian is trivial. Note that if & > § then for all distributions p we have H,(p) < Hg(p). The key to
approximately reducing the number of conditions is to note that there exists a distribution quite close to p such that
up to some error terms the entropies can also be related in the opposite direction. Closeness is thereby measured
in terms of the statistical distance and we use B(p) = {p' : £ >_, [p; — p}|} to denote the € ball of (sub-normalized)
distributions p’ around p. We will also call such a p’ a smoothed distribution [39] [40)].

Specifically, we will show (see Lemma that for any 0 < a < 1, any distribution p and any € > 0, there exists a
smoothed distribution p’ € B¢(p) such that

, log %
Ho(p) 2 Ha(p) 2 Ho(p') — 1= (H15)
Similarly, whenever @ > 1 there exists another distribution p” € B¢(p) such that
o logl
Hoo (p") + ——=5 = Ha(p) = Hoc(p). (H16)

This means that whenever we demand that H, (p) < H,(p') for all values of a > 0, we can reduce the set of conditions
in an approximate sense by relating H, to Hy or Hy,. More precisely, given probability distributions p and ¢ and
€ > 0 we can construct smoothed distributions p’ € B¢(p) and ¢” € B¢(q) according to explicit smoothing strategies
as in Lemma If the following conditions are satisfied

log

e For 0 <o <1, Ho(p') — 7= > Hy(q)
1
e For a > 1, Hyo(p) > Hoo(¢") + %’

then Yo > 0, it holds that H, (p) > H,(q). As we will see these conditions can also be expressed in terms of smoothed
entropies [39], however, we would like to emphasize that there are in fact only two smoothing strategies, one for o > 1
and one for a < 1. This means that one could apply these smoothing strategies, and only verify the two conditions
stated above. It should also be emphasized that this allows a verification in one direction only. Namely, if we find
that the conditions above are satisfied, then we can conclude that also the original conditions are satisfied for all a.
However, due to the approximations above the converse does not hold in the sense that the original conditions may
be satisfied and yet the fudge terms in the conditions above no longer allow for a verification.

A similar statement can be made for the Rényi divergences, which are relevant for the case of a non-trivial
Hamiltonian. Here we want to check whether given initial and final states p and p’ we have that for all a > 0,
D.(pllps) = Da(p'||pp). Again, we have a bound in one direction as the Rényi divergences are monotonically increas-
ing in «, hence Dy (p'||pg) > Da(p'||ps) whenever a > § [6]. As we show below, one can again obtain a bound in the
other direction by considering smoothed distributions. We show (Lemma 7 that for any distribution p there exists
a particular smoothed distribution p’ € B¢(p) such that D, (p|lqg) > Dso(p']lq) — ¢ for all @ > 1. ¢ is a logarithmic
fudge factor that depends on the smoothing parameter. A similar statement holds for a@ < 1, by relating D, to Dq
(see Lemma . Again, the smoothed distributions only depend on € and whether > 1 or a < 1.

These relations now again allow us to simplify our conditions in an approximate sense. Consider probability
distributions p, ¢ and r where ¢ has full rank rank(q) = n. For € > 0, apply the e-smoothing strategy in proof of
Lemma [27] for p to obtain p’ € B¢(p). Then if

Do (p'llr) 2 Doo(allr), (H17)

we have D, (p||r) > Da(q|r) for @ > 1. Similarly, apply the e-smoothing strategy in Lemma [28| for ¢ to obtain
q' € B¢(q). Then if the following conditions are satisfied

Do(pllr) Z Do(q'||7),

then Vo > 0, it holds that D, (p||r) > Da(q||7)-
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Appendix I: Comparison to other models
1. Thermal operations and time dependent Hamiltonians

As shown in [I], one can incorporate changing Hamiltonians into thermal operations by introducing an ancillary
system. Now that we have conditions for state transformations using ancillary systems we are in a position to prove
the optimality of this procedure.

In the standard thermodynamics, one usually deals with time dependent Hamiltonian. For example, expanding a
gas in a container by drawing a piston (and thereby changing the Hamiltonian, one goes from the thermal state of
volume V; to the thermal state of volume V5). This results in obtaining work.

In the paradigm of thermal operations, we have been discussing the case of a fixed Hamiltonian. There is a possibility
of changing the Hamiltonian of the system in the following sense: given a system in state p with Hamiltonian H,
one brings in another system in the thermal state with Hamiltonian H’. Then one can apply thermal operations
to this compound system, and finally trace out the initial system, obtaining some output state ¢ with Hamiltonian
H'’. In particular, in this way, one can go for free from the thermal state with one Hamiltonian to a thermal state
with another Hamiltonian, which may seem to contradict a common thermodynamical paradigm, where changing the
Hamiltonian is related to performing work. However, the above ”change” of Hamiltonian is not really a change: the
Hamiltonian of the universe is fixed, and we simply have turned to another system with the required new Hamiltonian,
and removed the system with the old Hamiltonian. Thus in this case, while going from the thermal state (pg, H) to
another thermal state (pjs, H') one does not gain any work, nor does one need any work while performing such an
operation.

In standard thermodynamics, in the above transition, work is performed equal to the difference of free energy of
the initial and final state. The way to reconcile the paradigm of thermal operations with the more common picture of
changing the Hamiltonian was given in [I] (see also [I7]). Suppose one wants to go from p to o and change Hamiltonian
form H to H’, however not in the trivial way described above, which does not cost any work, but in a traditional
sense. As noted, the total Hamiltonian of the universe is constant, so such a change of Hamiltonian means that we
actually use some other system, usually a clock system, such that the total Hamiltonian is

t=ty

Y HB @t (I1)

t=t;

where |t) are orthogonal states. Then in more standard thermodynamics, we set the initial state to be p® |t;)(t;|, and
let such a system (but not the clock) weakly interact with the heat bath. Due to the weakness of interactions, during
the system’s evolution, the state is approximately in product form p(t) ® |t)(t| Then the final state is 0 @ |t ) (|, and
we say we have changed state p to o = p(t) and H(¢;) into H(ts). The work is then equal to AW = fttif tr H(t)p(t).
In our present approach, the weak interaction with the heat bath is replaced by a unitary transformation, that
commutes with the total Hamiltonian. We require only, that the final state is of product form p(ts) ® |ts)(t¢|. The
state t¢ we take orthogonal to ¢;. However, now one can greatly simplify it, as for ideal processes, the possibility of a
transition does not depend on the intermediate times, and one can use just two values of ¢: [t;) = |0) and |tf) = [1).
Therefore, to mimic the change of Hamiltonian, we consider a fixed Hamiltonian

H = Hy® |0)(0] + Hy ® 1)1 (12)

where we have an additional system, that plays the role of a switch bit, and its state changes from |0) to |1), so that
we have a transition between p ® |0)(0] and o ® |1)(1| and Hamiltonian Hy to H; acting on the system. As shown in
[1, if p and o are thermal states then the amount of deterministic work we need to perform is equal precisely to the
difference of standard free energies. In this picture, the variety of paths that might lead from Hy to H; is replaced
by the variety of thermal operations that may be applied to the initial state, and give the final state o @ |1)(1].

As an example, let us observe, that by using the paradigm of thermal operations, for p and ¢ being thermal states,
we will obtain the same answer as in the traditional paradigm: the amount of work is equal to the difference of free
energies.

We start with (p§’ @ [0)(0] @ [E)w (E|, H) = (pin, H) and want to end up with (p§’ @ |1)(1] ® |E")w(E'|, H) =

(pout, H) where pg)) and pg) are thermal states for Hamiltonians Hy and H;, respectively. The total Hamiltonian is

of the form

H = Hy ®|0){0| + H; @ |1){1| + Hw (13)
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where Hy is the Hamiltonian of the work system. One then computes that kT Dy (pim) = kT In(Zy/Z) + E and
ETDu(pout) = kTIn(Z1/Z) + E' where Zy, Z; are partition functions for Hp, H; in temperature T. Thus the
transition is possible, whenever F(p(ﬁo)) - F(p(ﬁl)) > AW, where Ay = E/ — FE is the amount of performed work.

For general states, we obtain, that (p ® |0)(0|, H) can be transformed into (o ® |1)(1], H), with H of the form
if and only if the generalized free energies satisfy

Fo(p, Ho) = Fa(o, Hy) (14)
where F,, is defined as follows, for any given state and Hamiltonian:
Fo(p, H) = —kT'InZ + kT Da(pllps) (I5)

where pg is the thermal state for the Hamiltonian H.

Finally, one can ask, whether the Hamiltonian of the form is optimal for the transition from (pg, Ho) to (p1, H1)?

More generally one could do the following. We consider initial state pg ® o¢ and p; ® o1, where oy, and o
are arbitrary states of ancillas (replacing the switch states |0) and |1)). Then we are to choose an arbitrary total
Hamiltonian which satisfies the following conditions: for any state from the support of py ® og it acts as Hy, while
for any state with support oy, and o it acts as H;. We also demand that oy and o7 have to be related unitarily,
otherwise, going from o( and o7 can be exploited as a resource(if e.g. o is pure, while o7 is not).

Now one computes that

Da(po ® 00, H) = —1n Zy/Z + Da(pol|p}”) + Da(oo||1/d)
Da(po ® 00, H) = —In Z1/Z + Da(p1]|p}) + Da(o1||1/d)

Using that Dy (0¢||I/d) = Dqa(01]/I/d) we obtain that the condition of monotonicity of D, is equivalent to (I4).
Thus the simple switch mechanism of Hamiltonian is optimal.

2. Universality of the work bit

Although we have used a specific form of work system to invest/extract work (the work bit), it was claimed to
be equivalent to other work systems in [I]. However, as the work system is an ancilla, one needs to check that
this universality continues to hold in the context where catalysts are allowed. One wants to show that the derived
work distance is general, i.e. whether by considering other proposed forms of battery systems, we arrive at the same
quantity. In fact, we will see that the second laws impose a constraint on how one defines work, if one demands
reversibility of the work system. We see that this is satisfied when work is defined in terms of raising and lowering the
energy of a pure state (or a system with highly peaked energy). This is because transitions between pure states are
not effected by catalysis. However, in models where the Hamiltonian is trivial, i.e. H = 0, one needs an alternative
way to define work. For example, one can define it in terms of the number of maximally mixed states which are erased
into pure states, as was done in [34]. In this case, we can again apply our second laws to the initial and final state,
including the battery, to derive an upper bound on W.

More generally, let us take the initial state of the work system W to be W; and the final state to be W;. Considering
the conditions we derived for state transformation on the joint system SW, from p to p’ on system S, Vo > 0 (since
the probability distributions have zeros, conditions for a(0 become redundant), we have

Fa(pl(g)WprBsw) SFa(P®Wi”pﬁsw) (16)
This implies
Foz(Wf”pﬁw) - Fa(Wi”Pﬁw) < Foz(p”pﬁs) - Fa(/’l”pﬁs) (I7)

It is reasonable that for any definition of work system and work extraction, we require that one can reversibly go
from state W; to Wy and visa versa. This is equivalent to requiring that

W = Fa(Willpgy) — Fa(Willpsy) Vo (I8)

This is because if Fi,(Wy|lpsy,) — Fa(Willpgy,) were different for two values of «, then it would require a different
amount of pure energy to go from the initial state to the final state, than from the final state to the initial. We
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can then just define this constant W to be the amount of work W, and thus the amount of work obeys W =
Fa(Wellpgy ) — Fa(Willpgy,) for all a.

Now, in the case of close to pure energy states, Fo(Wllpsy, ) — Fa(Willpsy,) = Ef — E; and so we recover that the
work is just the change in energy of the work system, regardless of what type of system it is. For the battery used
in [34] this is also the case: denote the work system W as consisting of n qubits, where the Hamiltonian Hy =1 is
trivial. n can be arbitrarily large. Its initial state is described as W; = |0)(0| ® 2~M 1. Physically this just implies that
the state consists of A\; maximally mixed qubits, and the remaining n — Ay qubits are pure. Its final state is similarly
defined as Wy = |0)(0| ® 27*2[. The thermal state of system W is pgy,, = 27 "I, which is maximally mixed.

What is interesting about this comparison is that while in our model, work is stored in the form of energy, in [13, [34]
the work is quantified by means of purity, i.e. how many pure qubits we invest/create during the process of state
transformation. The significance of information to work extraction has been discussed by various works [13], [42] 43].
In particular, Landauer’s principle [I5] [44] states that any physical process that erases one bit of information (i.e.,
creating purity) in an environment of temperature T has a fundamental average work cost of k7" In(2). Similarly, by
ulitizing one bit of information stored (i.e., consuming purity) in a physical system, and allowing it to interact with
a thermal bath at temperature T', one can draw an average work of k7T In(2).

We will now use this battery system W. From Equation we can derive an upper bound for the quantity
A=A+ Ao

KT (M = o) < Falplpss) — Fa(p'llpss) (19)

Since the work is defined via the process of Landauer erasure as kT'(A; — A2), we see that this bound is equivalent
to the bounds in . The quantity A = A\; — Ay denotes the net gain of pure qubits in the process. By Landauer’s
principle A gives a bound on the maximum amount of work extractable, as no more than 7T In(2) amount of work
can be extracted given one bit of pure information. We thus see that our condition yields the same upper bound on

w

W < inf [Fa(ploss) — Falo/llpss)

There are, however, a few more subtle differences between these two models for work systems. For instance, note
that this battery consists of qubits, and hence A; and A\ take integer values. [34] has shown that they can be
further generalized to take values of rational numbers, however, one has to postulate the connection between work
and information. In our wit model, however, W can take any value, including irrational values.
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